Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Front Immunol ; 14: 1172000, 2023.
Article in English | MEDLINE | ID: covidwho-20243355

ABSTRACT

Type I interferons (IFNs-α/ß) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.


Subject(s)
Interferon Type I , RNA Viruses , Vaccines , Animals , Immune Evasion , Antiviral Agents/pharmacology
2.
Pathogens ; 11(1)2022 Jan 09.
Article in English | MEDLINE | ID: covidwho-20238089

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.

3.
Pathogens ; 9(2)2020 Feb 18.
Article in English | MEDLINE | ID: covidwho-2267928

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly virulent re-emerging enteric coronavirus that causes acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets. Despite this, a safe and effective PEDV vaccine against highly virulent strains is unavailable, making PEDV prevention and control challenging. Lactogenic immunity induced via the gut-mammary gland-secretory IgA (sIgA) axis, remains the most promising and effective way to protect suckling piglets from PEDV. Therefore, a successful PEDV vaccine must induce protective maternal IgA antibodies that passively transfer into colostrum and milk. Identifying variables that influence lymphocyte migration and IgA secretion during gestation and lactation is imperative for designing maternal immunization strategies that generate the highest amount of lactogenic immune protection against PEDV in suckling piglets. Because pregnancy-associated immune alterations influence viral pathogenesis and adaptive immune responses in many different species, a better understanding of host immune responses to PEDV in pregnant swine may translate into improved maternal immunization strategies against enteric pathogens for multiple species. In this review, we discuss the role of host factors during pregnancy on antiviral immunity and their implications for generating protective lactogenic immunity in suckling neonates.

4.
Arch Virol ; 168(1): 5, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2243796

ABSTRACT

We isolated 20 SARS-CoV-2 strains from positive clinical samples collected in Columbus, Ohio, and investigated the replication of one pair of isolates: a clade 20G strain and a variant of this strain carrying a Q677H mutation in the spike protein and six other amino acid mutations. The OSU.20G variant replicated to a higher peak infectious titer than the 20G base strain in Vero-E6 cells, but the titers were similar when both strains were grown in Calu-3 cells. These results suggest that the OSU.20G variant has increased replication fitness compared to the 20G base strain. This may have contributed to its emergence in December 2020-January 2021.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Mutation
5.
Viruses ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: covidwho-2237152

ABSTRACT

Live attenuated vaccines (LAVs) replicate in the respiratory/oral mucosa, mimic natural infection, and can induce mucosal and systemic immune responses to the full repertoire of SARS-CoV-2 structural/nonstructural proteins. Generally, LAVs produce broader and more durable protection than current COVID-19 vaccines. We generated a temperature-sensitive (TS) SARS-CoV-2 mutant TS11 via cold-adaptation of the WA1 strain in Vero E6 cells. TS11 replicated at >4 Log10-higher titers at 32 °C than at 39 °C. TS11 has multiple mutations, including those in nsp3, a 12-amino acid-deletion spanning the furin cleavage site of the S protein and a 371-nucleotide-deletion spanning the ORF7b-ORF8 genes. We tested the pathogenicity and protective efficacy of TS11 against challenge with a heterologous virulent SARS-CoV-2 D614G strain 14B in Syrian hamsters. Hamsters were randomly assigned to mock immunization-challenge (Mock-C) and TS11 immunization-challenge (TS11-C) groups. Like the mock group, TS11-vaccinated hamsters did not show any clinical signs and continuously gained body weight. TS11 replicated well in the nasal cavity but poorly in the lungs and caused only mild lesions in the lungs. After challenge, hamsters in the Mock-C group lost weight. In contrast, the animals in the TS11-C group continued gaining weight. The virus titers in the nasal turbinates and lungs of the TS11-C group were significantly lower than those in the Mock-C group, confirming the protective effects of TS11 immunization of hamsters. Histopathological examination demonstrated that animals in the Mock-C group had severe pulmonary lesions and large amounts of viral antigens in the lungs post-challenge; however, the TS11-C group had minimal pathological changes and few viral antigen-positive cells. In summary, the TS11 mutant was attenuated and induced protection against disease after a heterologous SARS-CoV-2 challenge in Syrian hamsters.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Mesocricetus , SARS-CoV-2/genetics , Temperature , Vaccines, Attenuated/genetics
6.
Viruses ; 14(6)2022 06 16.
Article in English | MEDLINE | ID: covidwho-1911641

ABSTRACT

Porcine epidemic diarrhea (PED), causing up to 100% mortality in neonatal pigs, is a highly contagious enteric disease caused by PED virus (PEDV). The highly virulent genogroup 2 (G2) PEDV emerged in 2010 and has caused huge economic losses to the pork industry globally. It was first reported in the US in 2013, caused country-wide outbreaks, and posed tremendous hardship for many pork producers in 2013-2014. Vaccination of pregnant sows/gilts with live attenuated vaccines (LAVs) is the most effective strategy to induce lactogenic immunity in the sows/gilts and provide a passive protection via the colostrum and milk to suckling piglets against PED. However, there are still no safe and effective vaccines available after about one decade of endeavor. One of the biggest concerns is the potential reversion to virulence of an LAV in the field. In this review, we summarize the status and the major obstacles in PEDV LAV development. We also discuss the function of the transcriptional regulatory sequences in PEDV transcription, contributing to recombination, and possible strategies to prevent the reversion of LAVs. This article provides insights into the rational design of a promising LAV without safety issues.


Subject(s)
Coronavirus Infections , Dysentery , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Female , Pregnancy , Recombination, Genetic , Sus scrofa , Swine , Swine Diseases/epidemiology , Vaccines, Attenuated
7.
Viruses ; 14(6)2022 06 05.
Article in English | MEDLINE | ID: covidwho-1884381

ABSTRACT

Avian species often serve as transmission vectors and sources of recombination for viral infections due to their ability to travel vast distances and their gregarious behaviors. Recently a novel deltacoronavirus (DCoV) was identified in sparrows. Sparrow deltacoronavirus (SpDCoV), coupled with close contact between sparrows and swine carrying porcine deltacoronavirus (PDCoV) may facilitate recombination of DCoVs resulting in novel CoV variants. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from sparrow coronaviruses (SpCoVs) may enhance infection in poultry. We used recombinant chimeric viruses, which express S protein or the RBD of SpCoV (icPDCoV-SHKU17, and icPDCoV-RBDISU) on the genomic backbone of an infectious clone of PDCoV (icPDCoV). Chimeric viruses were utilized to infect chicken derived DF-1 cells, turkey poults, and embryonated chicken eggs (ECEs) to examine permissiveness, viral replication kinetics, pathogenesis and pathology. We demonstrated that DF-1 cells in addition to the positive control LLC-PK1 cells are susceptible to SpCoV spike- and RBD- recombinant chimeric virus infections. However, the replication of chimeric viruses in DF-1 cells, but not LLC-PK1 cells, was inefficient. Inoculated 8-day-old turkey poults appeared resistant to icPDCoV-, icPDCoV-SHKU17- and icPDCoV-RBDISU virus infections. In 5-day-old ECEs, significant mortality was observed in PDCoV inoculated eggs with less in the spike chimeras, while in 11-day-old ECEs there was no evidence of viral replication, suggesting that PDCoV is better adapted to cross species infection and differentiated ECE cells are not susceptible to PDCoV infection. Collectively, we demonstrate that the SpCoV chimeric viruses are not more infectious in turkeys, nor ECEs than wild type PDCoV. Therefore, understanding the cell and host factors that contribute to resistance to PDCoV and avian-swine chimeric virus infections may aid in the design of novel antiviral therapies against DCoVs.


Subject(s)
Coronavirus Infections , Sparrows , Swine Diseases , Animals , Chickens , Deltacoronavirus/genetics , Poultry , Spike Glycoprotein, Coronavirus/genetics , Swine , Turkeys
8.
J Virol ; 96(11): e0046922, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1854236

ABSTRACT

Coronavirus (CoV) nonstructural protein 1 (nsp1) inhibits cellular gene expression and antagonizes interferon (IFN) response. Porcine epidemic diarrhea virus (PEDV) infects pigs and causes high mortality in neonatal piglets. We hypothesized that a recombinant PEDV carrying mutations at the conserved residues N93 and N95 of nsp1 induces higher IFN responses and is more sensitive to IFN responses, leading to virus attenuation. We mutated PEDV nsp1 N93 and N95 to A93 and A95 to generate the recombinant N93/95A virus using the infectious clone of a highly virulent PEDV strain, PC22A (icPC22A), and evaluated N93/95A virus in vitro and in vivo. Compared with icPC22A, the N93/95A mutant replicated to significantly lower infectious titers, triggered stronger type I and III IFN responses, and was more sensitive to IFN treatment in vitro. To evaluate the pathogenicity and immunogenicity, 5-day-old gnotobiotic piglets were orally inoculated with the N93/95A or icPC22A strain or mock inoculated and then challenged at 22 days postinoculation (dpi) with icPC22A. icPC22A in all pigs (100% [5/5]) caused severe diarrhea and death within 6 dpi. Only one pig (25% [1/4]) died in the N93/95A group. Compared with the icPC22A group, significantly delayed and diminished fecal PEDV shedding was detected in the N93/95A group. Postchallenge, all piglets in N93/95A group were protected from severe diarrhea and death, whereas all pigs in the mock-challenged group developed severe diarrhea, and 25% (1/4) of them died. In summary, nsp1 N93A and N95A mutations attenuated PEDV but retained viral immunogenicity and can be targets for the development of live attenuated vaccines for PEDV. IMPORTANCE PEDV causes porcine epidemic diarrhea (PED) and remains a great threat to the swine industry worldwide because no effective vaccines are available yet. Safe and effective live attenuated vaccines can be designed using reverse genetics to induce lactogenic immunity in pregnant sows to protect piglets from the deadly PED. We found that an engineered PEDV mutant carrying N93A and N95A mutations of nsp1 was partially attenuated and remained immunogenic in neonatal pigs. Our study suggested that nsp1 N93 and N95 can be good targets for the rational design of live attenuated vaccines for PEDV using reverse genetics. Because CoV nsp1 is conserved among alphacoronaviruses (α-CoVs) and betacoronaviruses (ß-CoVs), it may be a good target for vaccine development for other α-CoVs or ß-CoVs.


Subject(s)
Coronavirus Infections , Interferons , Porcine epidemic diarrhea virus , Swine Diseases , Viral Nonstructural Proteins , Animals , Animals, Newborn , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Diarrhea/veterinary , Diarrhea/virology , Female , Interferons/immunology , Mutation , Swine , Swine Diseases/immunology , Swine Diseases/virology , Viral Nonstructural Proteins/genetics
9.
Seizure ; 99: 71-74, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1852058

ABSTRACT

PURPOSE: To assess the safety of inactivated coronavirus 2019 disease (COVID-19) vaccine in tuberous sclerosis complex (TSC) patients with epilepsy. METHODS: All patients with epilepsy were selected from Efficacy and Safety of Sirolimus in Pediatric Patients with Tuberous Sclerosis (ESOSPIT) project and younger than 17 years old. The patients were treated with mTOR inhibitors (rapamycin). A total of 44 patients who completed the two-dose inactivated COVID-19 vaccine between July 7, 2021, and January 1, 2022, were enrolled. RESULTS: The median age of seizure onset was 23 months. About two-thirds of patients have focal seizures. Thirty-three patients use antiseizure medications. The mean duration of rapamycin treatment was 55.59 ± 18.42 months. Adverse reactions within 28 days after injection occurred in 11 patients (25%), all were under 12 years old. Injection site pain was the most reported event (20.45%), which was mild in severity and improved within one day. All patients had no seizure-related changes after vaccination. CONCLUSION: This study shows that the inactivated COVID-19 vaccine was well tolerated and safe in TSC patients with epilepsy, as well as for those treated with mTOR inhibitors.


Subject(s)
COVID-19 , Epilepsy , Tuberous Sclerosis , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Child, Preschool , Epilepsy/chemically induced , Epilepsy/drug therapy , Humans , Infant , MTOR Inhibitors , Seizures/drug therapy , Sirolimus/adverse effects , TOR Serine-Threonine Kinases , Tuberous Sclerosis/complications , Tuberous Sclerosis/drug therapy
10.
J Med Virol ; 94(7): 3203-3222, 2022 07.
Article in English | MEDLINE | ID: covidwho-1750409

ABSTRACT

Circular RNAs (circRNAs) are a newly recognized component of the transcriptome with critical roles in autoimmune diseases and viral pathogenesis. To address the importance of circRNA in RNA viral transcriptome, we systematically identified and characterized circRNAs encoded by the RNA genomes of betacoronaviruses using both bioinformatical and experimental approaches. We predicted 351, 224, and 2764 circRNAs derived from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus, respectively. We experimentally identified 75 potential SARS-CoV-2 circRNAs from RNA samples extracted from SARS-CoV-2-infected Vero E6 cells. A systematic comparison of viral and host circRNA features, including abundance, strand preference, length distribution, circular exon numbers, and breakpoint sequences, demonstrated that coronavirus-derived circRNAs had a spliceosome-independent origin. We further showed that back-splice junctions (BSJs) captured by inverse reverse-transcription polymerase chain reaction have different level of resistance to RNase R. Through northern blotting with a BSJ-spanning probe targeting N gene, we identified three RNase R-resistant bands that represent SARS-CoV-2 circRNAs that are detected cytoplasmic by single-molecule and amplified fluorescence in situ hybridization assays. Lastly, analyses of 169 sequenced BSJs showed that both back-splice and forward-splice junctions were flanked by homologous and reverse complementary sequences, including but not limited to the canonical transcriptional regulatory sequences. Our findings highlight circRNAs as an important component of the coronavirus transcriptome, offer important evaluation of bioinformatic tools in the analysis of circRNAs from an RNA genome, and shed light on the mechanism of discontinuous RNA synthesis.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , In Situ Hybridization, Fluorescence , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Circular/genetics , SARS-CoV-2/genetics , Spliceosomes/genetics
11.
Front Vet Sci ; 7: 626785, 2020.
Article in English | MEDLINE | ID: covidwho-1573571

ABSTRACT

Deltacoronavirus (DCoV)-the only coronavirus that can infect multiple species of mammals and birds-was initially identified in several avian and mammalian species, including pigs, in China in 2009-2011. Porcine DCoV has since spread worldwide and is associated with multiple outbreaks of diarrheal disease of variable severity in farmed pigs. In contrast, avian DCoV is being reported in wild birds in different countries without any evidence of disease. The DCoV transboundary nature and the recent discovery of its remarkably broad reactivity with its cellular receptor-aminopeptidase N (APN)-from different species emphasize its epidemiological relevance and necessitate additional research. Further, the ability of porcine DCoV to infect and cause disease in chicks and turkey poults and gnotobiotic calves is suggestive of its increased potential for interspecies transmission or of its avian origin. Whether, porcine DCoVs were initially acquired by one or several mammalian species from birds and whether avian and porcine DCoVs continue co-evolving with frequent spillover events remain to be major unanswered questions. In this review, we will discuss the current information on the prevalence, genetic diversity, and pathogenic potential of porcine and avian DCoVs. We will also analyze the existing evidence of the ongoing interspecies transmission of DCoVs that may provide novel insights into their complex evolution.

12.
Int J Biol Sci ; 18(1): 386-408, 2022.
Article in English | MEDLINE | ID: covidwho-1607858

ABSTRACT

Responding to the coronavirus disease 2019 (COVID-19) pandemic has been an unexpected and unprecedented global challenge for humanity in this century. During this crisis, specialists from the laboratories and frontline clinical personnel have made great efforts to prevent and treat COVID-19 by revealing the molecular biological characteristics and epidemic characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, SARS-CoV-2 has severe consequences for public health, including human respiratory system, immune system, blood circulation system, nervous system, motor system, urinary system, reproductive system and digestive system. In the review, we summarize the physiological and pathological damage of SARS-CoV-2 to these systems and its molecular mechanisms followed by clinical manifestation. Concurrently, the prevention and treatment strategies of COVID-19 will be discussed in preclinical and clinical studies. With constantly unfolding and expanding scientific understanding about COVID-19, the updated information can help applied researchers understand the disease to build potential antiviral drugs or vaccines, and formulate creative therapeutic ideas for combating COVID-19 at speed.


Subject(s)
COVID-19/pathology , COVID-19/therapy , Immunotherapy/methods , SARS-CoV-2 , Animals , Antiviral Agents/therapeutic use , COVID-19 Vaccines , Cytokines/metabolism , Female , Humans , Immune System , Immunity, Innate , Immunologic Memory , Male , Mice , COVID-19 Drug Treatment
14.
Am J Chin Med ; 49(2): 237-268, 2021.
Article in English | MEDLINE | ID: covidwho-1365230

ABSTRACT

Intestinal flora is essential for maintaining host health and plays a unique role in transforming Traditional Chinese Medicine (TCM). TCM, as a bodyguard, has saved countless lives and maintained human health in the long history, especially in this COVID-19 pandemic. Pains of diseases have been removed from the effective TCM therapy, such as TCM preparation, moxibustion, and acupuncture. With the development of life science and technology, the wisdom and foresight of TCM has been more displayed. Furthermore, TCM has been also inherited and developed in innovation to better realize the modernization and globalization. Nowadays, intestinal flora transforming TCM and TCM targeted intestinal flora treating diseases have been important findings in life science. More and more TCM researches showed the significance of intestinal flora. Intestinal flora is also a way to study TCM to elucidate the profound theory of TCM. Processing, compatibility, and properties of TCM are well demonstrated by intestinal flora. Thus, it is no doubt that intestinal flora is a core in TCM study. The interaction between intestinal flora and TCM is so crucial for host health. Therefore, it is necessary to sum up the latest results in time. This paper systematically depicted the profile of TCM and the importance of intestinal flora in host. What is more, we comprehensively summarized and discussed the latest progress of the interplay between TCM and intestinal flora to better reveal the core connotation of TCM.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Dysbiosis/microbiology , Gastrointestinal Microbiome , Medicine, Chinese Traditional , Autoimmune Diseases/microbiology , Autoimmune Diseases/therapy , COVID-19 , Cardiovascular Diseases/microbiology , Cardiovascular Diseases/therapy , Diabetes Mellitus/microbiology , Diabetes Mellitus/therapy , Electroacupuncture , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/therapy , Humans , Metabolic Diseases/microbiology , Metabolic Diseases/therapy , Neoplasms/microbiology , Neoplasms/therapy , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/therapy , Obesity/microbiology , Obesity/therapy , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/therapy , SARS-CoV-2
15.
Cell Biosci ; 11(1): 106, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1261279

ABSTRACT

BACKGROUND: Coronavirus (CoV) nonstructural protein 14 (nsp14) has exoribonuclease (ExoN) activity, responsible for proofreading and contributing to replication fidelity. It has been reported that CoVs exhibit variable sensitivity to nsp14-ExoN deficiency. Betacoronavirus murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV were viable upon nsp14-ExoN deficiency. While betacoronavirus Middle East respiratory syndrome (MERS)-CoV and SARS-CoV-2 were non-viable with disabled nsp14-ExoN. In this study, we investigated the nsp14-ExoN deficiency of alphacoronavirus porcine epidemic diarrhea virus (PEDV) in viral pathogenesis using reverse genetics. RESULTS: Eight nsp14-ExoN deficient mutants, targeting the predicted active sites and the Zinc finger or mental-coordinating sites, of PEDV were designed. Only one mutant E191A with a mutation in the Mg2+-binding site was rescued using the infectious clone of PEDV PC22A strain (icPC22A). The passage no.1-3 (P1-3) of E191A grew to very low titers in Vero cells. To evaluate the pathogenesis of the E191A, 4 or 5-day-old gnotobiotic pigs were inoculated orally with 100 TCID50/pig of the E191A-P1, icPC22A, or mock. All mock pigs did not shed virus in feces or show clinical signs. All pigs inoculated with icPC22A shed high viral RNA levels, had severe diarrhea, and died by 6 days post-inoculation (dpi). In contrast, only 3 pigs (3/4, 75%) in the E191A-P1 group shed low levels of viral RNA and 2 pigs had moderate diarrhea at acute infection phase. At 22 dpi, each pig was challenged orally with 106 plaque forming unit of virulent icPC22A. All pigs in the mock group developed severe diarrhea and 2 of the 5 pigs died. Pigs in the E191A-P1 group had less severe diarrhea and no pigs died. Sanger sequencing analysis revealed that the viral genome in the fecal sample of one E191A-P1-inoculated pig and the P4 virus passaged in vitro lost the E191A mutation, suggesting the genetic instability of the E191A mutant. CONCLUSION: The recombinant PEDV variants carrying mutations at the essential functional sites within nsp14-ExoN were either lethal or genetically unstable. Our finding further confirmed the critical role of nsp14-ExoN in CoV life cycle, suggesting that it may be a target for the design of universal anti-CoV drugs.

16.
Vet Pathol ; 58(3): 438-452, 2021 05.
Article in English | MEDLINE | ID: covidwho-999437

ABSTRACT

Coronaviruses (CoVs) comprise a large group of positive stranded RNA viruses that infect a diverse host range including birds and mammals. Infection with CoVs typically presents as mild to severe respiratory or enteric disease, but CoVs have the potential to cause significant morbidity or mortality in highly susceptible age groups. CoVs have exhibited a penchant for jumping species barriers throughout history with devastating effects. The emergence of highly pathogenic or infectious CoVs in humans over the past 20 years, including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and most recently severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the significant threat that CoV spillovers pose to humans. Similar to the emergence of SARS-CoV-2, CoVs have been devastating to commercial animal production over the past century, including infectious bronchitis virus in poultry and bovine CoV, as well as the emergence and reemergence of multiple CoVs in swine including transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and porcine deltacoronavirus. These naturally occurring animal CoV infections provide important examples for understanding CoV disease as many animal CoVs have complex pathogenesis similar to SARS-CoV-2 and can shed light on the ongoing SARS-CoV-2 outbreak. We provide an overview and update regarding selected existing animal CoVs and their primary host species, diseases caused by CoVs, how CoVs jump species, whether these CoVs pose an outbreak risk or risk to humans, and how we can mitigate these risks.


Subject(s)
Coronavirus Infections/virology , Coronavirus/physiology , Animals , Birds , Coronavirus/classification , Coronavirus/pathogenicity , Coronavirus Infections/transmission , Disease Models, Animal , Humans , Mammals , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL